Berry phase mediated Anomalous Thermoelectric and magnetic response in 2D Topological Insulators

Panagiotis Kotetes

Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology

G. Schön (Karlsruhe Institute of Technology)
A. Shnirman (Karlsruhe Institute of Technology)
G. Varelogiannis (National Technical University of Athens)

NanoCTM meeting: Balaton Hungary, June 16, 2011
Making a long story, short...

- Brief introduction to 2D Topological Insulators

- Sleuthing for unique fingerprints of Topology

- The emergence of an Anomalous Nernst effect and Orbital Magnetization

- Original Motivation: numerous experimental observations of a Giant Nernst signal in strongly correlated electronic systems

- The conditions for a Giant Nernst Signal in Chiral states of matter

- Anomalous thermoelectricity and magnetic response in planar Topological Semiconductors
2D Topological Insulators and bulk-boundary correspondence

Definition of a Topological Insulator
A state characterized by Topologically protected edge modes

2 fundamental systems:
- Anomalous Quantum Spin Hall Insulator \rightarrow Time-Reversal

\[
\begin{align*}
\text{QSH} & \\
\end{align*}
\]

- Anomalous Quantum Hall Insulator \rightarrow No Time-Reversal

\[
\begin{align*}
\text{QH} & \\
\end{align*}
\]

X.-L. Qi and S.-C. Zhang, Physics Today
The Hamiltonian must include the following features:

- Spin-Orbit coupling
- Band Gap near the Γ point
- Time-reversal symmetry
BHZ Quantum Spin Hall Insulator lattice model

BHZ lattice model Hamiltonian:

\[\mathcal{H}(\mathbf{k}) = \begin{pmatrix} \hat{\mathcal{H}}(\mathbf{k}) & 0 \\ 0 & \hat{\mathcal{H}}^*(\mathbf{-k}) \end{pmatrix}, \]

\[\begin{pmatrix} |\mathbf{k}, m_l = 0, m_s = +\frac{1}{2} > \\ |\mathbf{k}, m_l = +1, m_s = +\frac{1}{2} > \\ |\mathbf{k}, m_l = 0, m_s = -\frac{1}{2} > \\ |\mathbf{k}, m_l = -1, m_s = -\frac{1}{2} > \end{pmatrix} \]

with

\[\hat{\mathcal{H}}(\mathbf{k}) = \varepsilon(\mathbf{k}) + \mathbf{g}(\mathbf{k}) \cdot \tau \]

where

\[\varepsilon(\mathbf{k}) = C - 2D(2 - \cos k_x - \cos k_y) \]

\[\mathbf{g}(\mathbf{k}) = \begin{pmatrix} A \sin k_x, A \sin k_y, -2B \left(-\frac{M}{2B} + 2 - \cos k_x - \cos k_y \right) \end{pmatrix} \]

Band Gap at the Γ point \[2E(\mathbf{0}) \equiv 2|\mathbf{g}(\mathbf{0})| = 2|M| \]

For each block, the avoided band touching at the Γ point generates a finite Berry Curvature for each band in a block

\[\Omega^z_\nu(k) = -\frac{\nu}{2} \mathbf{\hat{g}}(k) \cdot \left(\frac{\partial \mathbf{\hat{g}}(k)}{\partial k_x} \times \frac{\partial \mathbf{\hat{g}}(k)}{\partial k_y} \right) \nu = \pm \]

The Topological (Monopole) Charge that sources the Berry Curvature is equal to

\[\tilde{N} = -\frac{1}{2\pi} \int d^2 k \ \Omega^z_-(k) = 1 \]

and provides the # of protected edge modes per block!
The finite Berry curvature acts as a \mathbf{k}–dependent magnetic field leading to

- **Anomalous Charge Hall effect with Hall conductivity**
 \[
 \sigma_{xy} = -\frac{e^2}{\hbar} \frac{1}{N} \sum_{\mathbf{k},\nu} \Omega^z_\nu(\mathbf{k}) n_F[E_\nu(\mathbf{k})]
 \]

 For $T = 0$ and $\mu = 0$ $\sigma_{xy} = -ne^2/h$, $n = 1$

- **Anomalous thermoelectric effect with Hall conductivity**
 \[
 \alpha_{xy} = \frac{e}{T\hbar N} \sum_{\mathbf{k},\nu} \Omega^z_\nu(\mathbf{k}) \left\{ E_\nu(\mathbf{k}) n_F[E_\nu(\mathbf{k})] + k_B T \ln \left(1 + e^{-\beta E_\nu(\mathbf{k})} \right) \right\}
 \]

- **Finite Orbital Magnetization**
 \[
 M_{orb} = \frac{e}{\hbar N} \sum_{\mathbf{k},\nu} \Omega^z_\nu(\mathbf{k}) \left\{ E(\mathbf{k}) n_F[E_\nu(\mathbf{k})] + k_B T \ln \left(1 + e^{-\beta E_\nu(\mathbf{k})} \right) \right\}
 \]
Berry-Curvature-originating fingerprints, for detecting Topological Order in 2D

Anomalous Quantum Hall state: **Single block Hamiltonian**!
- Anomalous Hall effect
- Anomalous charge Thermoelectric effect
- Finite Orbital Magnetization

Anomalous Quantum Spin Hall state: **Two block Hamiltonian with opposite Berry curvature per block**!
- Anomalous Spin Hall effect
- Anomalous Spin Thermoelectric effect
- Finite additional Zeeman Magnetization **due to Orbital effects**!
Thermoelectric Transport and Nernst Signal

- Constitutive relations for *thermoelectric charge transport*

\[
\begin{align*}
J_x &= \sigma_{xx} E_x + \sigma_{xy} E_y + \alpha_{xx} (-\partial_x T) \\
J_y &= \sigma_{yx} E_x + \sigma_{yy} E_y + \alpha_{yx} (-\partial_x T)
\end{align*}
\]

with \(J \equiv \text{charge current}, \ E \equiv \text{electric field}, \ T \equiv \text{temperature} \)

- *Thermopower* \(S \Rightarrow \text{longitudinal} \) voltage appearing for \(J = 0 \)

- *Nernst signal* \(N \Rightarrow \text{transverse} \) voltage appearing for \(J = 0 \)

\[
S \equiv \frac{\mathcal{E}_x}{\partial_x T} \quad \text{and} \quad N \equiv \frac{\mathcal{E}_y}{-\partial_x T}
\]

Anomalous N

\[\to \mathcal{B}_z = 0 \]
Quasiparticle and Vortex sources of a Nernst signal

Quasiparticles

1. **Transverse velocity due to the Lorentz force** ⇒ $N \sim B_z$

2. Nernst signal takes both signs depending on Doping

3. Nernst signal strongly linear in Temperature

4. **Single band metals show a tiny Nernst signal** $\sim nV/K$ due to Sonheimer cancellation

Superconducting Vortices

1. **Normal Core Entropy + Vortex attached Flux** ⇒ $\alpha_{xy} \neq 0$

 ⇒ $N \sim B_z$, B. D. Josephson, Physics Letters 16, 242 (1965)

2. **Only Positive** Nernst signal !!!!

3. Nernst signal non-linear in Temperature
Chirality driven Nernst signal

Chirality \equiv \text{Finite Angular Momentum}

1. Violation of Time-Reversal \Rightarrow \sigma_{xy}(B_z = 0) \neq 0 \text{ and } \alpha_{xy}(B_z = 0) \neq 0 \Rightarrow \text{Anomalous Hall + Nernst Effects!}

2. “Magnetic-field” in k-space: the Berry curvature \Omega_z(k).

3. The Nernst signal takes both signs !!!!

4. Large Fermi-Surface \Rightarrow N \text{ linear in Temperature}

Examples

- \text{CuCr}_2\text{Se}_4-x\text{Br}_x: \text{Spinel Ferromagnet + Spin-Orbit coupling}

- Heavily-Doped Chiral \text{d}_{xy} + \text{id}_{x^2-y^2} \text{ Density Wave}

But what happens in the Strongly Insulating limit??????

Chirality Induced Tilted-Hill Giant Nernst Signal:
Giant Tilted-Hill Nernst signal in High-Tc cuprates

- Giant N in Pseudogap + Superconducting regimes
- Tilted-Hill (peaked) temperature profile
- Positive Nernst signal
- Enhanced Diamagnetism in the pseudogap phase
- Diamagnetism scales with the Nernst signal

Yayu Wang, Lu Li, and N. P. Ong, PRB 73, 024510 (2006)
Giant Tilted-Hill Nernst signal in the heavy fermion compound URu$_2$Si$_2$

- The non-SC order in the phase diagram \equiv “Hidden Order” (HO)
- Giant N in the Hidden Order
- Tilted-Hill temperature profile
- No Diamagnetism!
- For low T, the HO condenses in a SC state, possibly Topological

Y. S. Oh et al, PRL 98, 016401 (2007)

Chiral $d_{xy} + id_{x^2-y^2}$ Density Wave

- Chiral D-Density waves have been recently proposed for understanding the Pseudogap regime in the cuprates (PK and G. Varelogiannis 2008 & S. Tewari et al. 2008) and the Hidden Order (PK, A. Aperis and G. Varelogiannis 2010)

- The very-same interactions promoting unconventional superconductivity, also favour Chiral Density Wave formation

- Half-filled single band square lattice model:

$$\mathcal{H}_0 = -2t \sum_k (\cos k_x + \cos k_y) c_{k\uparrow} c_k$$

- Enhanced tendency towards an Insulating Chiral D-Density Wave due to perfect nesting

- Formation of a Topological Insulating Condensate
Pairing interactions and Mean-field decoupling

- Intersite extended Hubbard interactions up to n.n.n.

\[\mathcal{H}_{\text{int}} = \sum_{\langle\langle i,j\rangle\rangle} \left(V_{ij} n_i n_j + J_{ij} \vec{S}_i \cdot \vec{S}_j \right) \]

- Driving effective interaction \(\sim \sum_{k,k'} V_{k,k'} c_k^\dagger c_{k+Q} c_{k'}^\dagger + Q c_{k'} \)

- Chiral d-density wave "Anomalous" Terms \(\Delta(k) c_k^\dagger c_{k+Q} + h.c. \)

Chiral D-Density Wave Order Parameter:

\[\Delta(k) \sim \sum_{k'} V_{k,k'} <c_{k'}^\dagger + Q c_{k'}> \Rightarrow \]

\[\Delta(k) = \Delta_1 \sin k_x \sin k_y - i\Delta_2 (\cos k_x - \cos k_y) \]
Mean-field Hamiltonian of a chiral d-density wave

- Nambu isospinor $\Psi_k^\dagger = (c_k^\dagger \ c_{k+Q}^\dagger)$, $k \in$ reduced B.Z.

- We obtain a pseudospin-$\frac{1}{2}$ system for each k-point

$$\mathcal{H}(k) = \begin{pmatrix} \varepsilon(k) + g_3(k) & g_1(k) - ig_2(k) \\ g_1(k) + ig_2(k) & \varepsilon(k) - g_3(k) \end{pmatrix} = \varepsilon(k)I_\tau + g(k) \cdot \tau$$

- $g_1(k) = \Delta_1 \sin k_x \sin k_y$, $g_2(k) = \Delta_2 (\cos k_x - \cos k_y)$,

- $g_3(k) = -2t(\cos k_x + \cos k_y)$ and $\varepsilon(k) = -\mu$.

- 2-Band Energy Spectrum: $\nu = \pm \rightarrow E_{\nu}(k) = \varepsilon(k) + \nu|g(k)|$
Steps for calculating the Tilted-Hill Giant Nernst signal

1. We obtain self-consistently the Chiral Order Parameter

PK and G. Varelogiannis, PRB 80, 212401 (2009)

2. Anomalous thermoelectric Hall conductivity

\[
\alpha_{xy} = \frac{e}{T \hbar N} \sum_{\mathbf{k}, \nu} \Omega^Z_\nu (\mathbf{k}) \left\{ E_\nu (\mathbf{k}) n_F [E_\nu (\mathbf{k})] + k_B T \ln \left(1 + e^{-\beta E_\nu (\mathbf{k})} \right) \right\}
\]

3. \(\sigma_{xx} \) and \(\alpha_{xx} \) in the Boltzmann approximation

\[
\sigma_{xx} = -\frac{e^2}{\hbar} \frac{1}{N} \sum_{\mathbf{k}, \nu} n'_F [E_\nu (\mathbf{k})] \frac{\tau_\nu (\mathbf{k})}{\hbar} \left(\frac{\partial E_\nu (\mathbf{k})}{\partial k_x} \right)^2
\]

\[
\alpha_{xx} = +\frac{ek_B}{\hbar} \frac{1}{N} \sum_{\mathbf{k}, \nu} n'_F [E_\nu (\mathbf{k})] \frac{\tau_\nu (\mathbf{k})}{\hbar} \left(\frac{\partial E_\nu (\mathbf{k})}{\partial k_x} \right)^2 \frac{E_\nu (\mathbf{k})}{k_B T}
\]

4. We ignore quasiparticle Hall conductivities

5. For finite \(B_z \neq 0 \), \(E_\nu (\mathbf{k}) \), \(\tau_\nu (\mathbf{k}) \), DOS get modified

D. Xiao, M.-C. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)
Mechanism of the Chirality Induced Tilted-Hill Giant Nernst signal

- For low temperatures, the strongly insulating character leads to the condition $\sigma_{xx} \ll \sigma_{xy}$ providing $S \simeq \alpha_{xy}/\sigma_{xy}$ and $N \simeq -\alpha_{xx}/\sigma_{xy}$.

- **A Thermoelectric crossing point** emerges at $\sigma_{xx} = \sigma_{xy}$, where $S = N$.

- After the crossing, $\sigma_{xx} \gg \sigma_{xy}$, provides $S \simeq \alpha_{xx}/\sigma_{xx}$, $N \simeq \alpha_{xy}/\sigma_{xx}$.

- **Crucial**: $N = S$. The usually high values of S, unavoidably lead to an enhancement of the Nernst voltage.

\[
S = \frac{\alpha_{xx}\sigma_{yy} + \alpha_{xy}\sigma_{xy}}{\sigma_{xx}\sigma_{yy} + \sigma_{xy}^2}
\]

\[
N = \frac{\sigma_{xx}\alpha_{xy} - \alpha_{xx}\sigma_{xy}}{\sigma_{xx}\sigma_{yy} + \sigma_{xy}^2}
\]

($t = 250\text{meV}$, $\mu = 0$, $a = 5\text{Å}$, $d_{x^2-y^2} = 53\text{meV}$, $\tau = 10^{-13}\text{s}$, $B_z = 5\text{T}$ and $d_{xy} \simeq 22\text{meV}$)

Properties of the Novel Anomalous Nernst Effect

- Emergence of a Thermoelectric Point
- Around the vicinity of this point, the Nernst signal exhibits a peak due to the crossover behaviour, leading to the *Tilted-Hill* profile
- The Nernst signal may be inverted by tuning the chemical potential or the doping of the sample

![Graph showing Nernst signal vs. temperature (T(K)) for different chemical potentials (μ): μ=+3meV, μ=+1meV, μ=−0.9meV, μ=−2.9meV, μ=−4.8meV.](image-url)
To engineer the long-sought Quantum Anomalous Hall state we can start from

- either a planar Anomalous Quantum Spin Hall state or
- by the surface of a \mathcal{T}-invariant 3D Topological Insulator which is described by a helical-liquid

$$\mathcal{H}(\mathbf{k}) = -\mu + k_y \sigma_x - k_x \sigma_y .$$

In both case \mathcal{T}-invariance must become violated via the following routes

1. magnetic impurities
2. perpendicular to the surface Zeeman field
3. Ferromagnetic coating

\mathcal{T}-violation leads to an effective BHZ single block model
Results on the Anomalous Nernst signal in the Anomalous Quantum Hall state

- We observe that the Anomalous Nernst signal becomes giant of the order mV/K
- There exist a thermoelectric crossing point where $N = |S|$.
- The Nernst response may be directly tuned by the doping of the system

\[M = -1.2\, \text{meV}, \quad \tau = 10^{-13}\, \text{s}, \quad a = 0.65\, \text{nm} \]
The additional contribution to the Zeeman magnetization can be in principle detected due to the

- temperature dependence that it demonstrates (although weak)
- its doping dependence that controls its sign!

![Graph showing the temperature dependence of orbital magnetization for different chemical potentials. The y-axis represents the orbital magnetization in units of \(\mu_B \), and the x-axis represents temperature in Kelvin. Three lines are shown, each labeled with the chemical potential: C–\(\mu \) = -52.6 meV, C–\(\mu \) = -26.3 meV, and C–\(\mu \) = 0 meV. The graph demonstrates how the magnetization changes with temperature for each case.]
We demonstrated a novel source of Giant Thermoelectricity that is dictated by a Tilted-Hill temperature profile and originates from a well insulated Chiral state in the case of strongly correlated systems.

The Anomalous Quantum Hall state could be detected due to a giant Nernst signal and an accompanying Thermoelectric crossing point.

The Berry Curvature induced Zeeman magnetization constitutes a magnetofingerprint for the detection of an Anomalous Quantum Spin Hall state through its temperature and doping dependence.
Thanks for your attention!